Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338758

ABSTRACT

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Subject(s)
Arecaceae , Hydrogen Peroxide , Catalase/metabolism , Phylogeny , Hydrogen Peroxide/metabolism , Transcriptome , Arecaceae/genetics , Arecaceae/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Palm Oil , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338979

ABSTRACT

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Subject(s)
Arecaceae , Fatty Acids, Nonesterified , Humans , Fatty Acids, Nonesterified/metabolism , Fatty Acids/metabolism , Palm Oil , Chromatography, Liquid , Myristates/metabolism , Arecaceae/genetics , Arecaceae/metabolism , Tandem Mass Spectrometry , Fatty Acids, Unsaturated/metabolism , Palmitic Acid/metabolism , Gene Expression Profiling , Stearic Acids/metabolism , Plant Oils/metabolism
3.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684168

ABSTRACT

Oil palm, a cross-pollinated crop with long generation time, poses a lot of challenges in achieving sustainable oil palm with high yield and quality. The African oil palm (Elaeis guineensis Jacq.) is the most productive and versatile oil-yielding crop in the world, producing more than any other oil-yielding crop. Despite recent challenges, such as stress tolerance, superior oil quality, disease tolerance, and the need for new market niches, there is a growing need to explore and develop new varieties with high yield potential and the genetic diversity required to maintain oil palm yield stability. Breeding is an indispensable part of producing high-quality planting materials to increase oil palm yield. Biotechnological technologies have transformed conventional plant breeding approaches by introducing novel genotypes for breeding. Innovative pre-breeding and breeding approaches, such as identifying candidate genes in wild or land races using genomics tools, can pave the way for genetic improvement in oil palm. In this review, we highlighted the modern breeding tools, including genomics, marker-assisted breeding, genetic engineering, and genome editing techniques in oil palm crops, and we explored certain concerns connected to the techniques and their applications in practical breeding.

4.
BMC Plant Biol ; 22(1): 112, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279075

ABSTRACT

BACKGROUND: Oil palm is the most efficient oil-producing crop in the world, and the yield of palm oil is associated with embryonic development. However, a comprehensive understanding of zygotic embryo development at the molecular level remains elusive. In order to address this issue, we report the transcriptomic analysis of zygotic embryo development in oil palm, specifically focusing on regulatory genes involved in important biological pathways. RESULTS: In this study, three cDNA libraries were prepared from embryos at S1 (early-stage), S2 (middle-stage), and S3 (late-stage). There were 16,367, 16,500, and 18,012 genes characterized at the S1, S2, and S3 stages of embryonic development, respectively. A total of 1522, 2698, and 142 genes were differentially expressed in S1 vs S2, S1 vs S3, and S2 vs S3, respectively. Using Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify key genes and pathways. In the hormone signaling pathway, genes related to auxin antagonize the output of cytokinin which regulates the development of embryo meristem. The genes related to abscisic acid negatively regulating the synthesis of gibberellin were strongly up-regulated in the mid-late stage of embryonic development. The results were reported the early synthesis and mid-late degradation of sucrose, as well as the activation of the continuous degradation pathway of temporary starch, providing the nutrients needed for differentiation of the embryonic cell. Moreover, the transcripts of genes involved in fatty acid synthesis were also abundantly accumulated in the zygotic embryos. CONCLUSION: Taken together, our research provides a new perspective on the developmental and metabolic regulation of zygotic embryo development at the transcriptional level in oil palm.


Subject(s)
Arecaceae/growth & development , Arecaceae/genetics , Arecaceae/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , China , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Metabolic Networks and Pathways , Palm Oil
5.
Plants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34961092

ABSTRACT

Oil palm crops are the most important determinant of the agricultural economy within the segment of oilseed crops. Oil palm growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic that limit crop productivity and are major constraints to meeting global food demands. The stress-tolerant oil palm crops that mitigate the effects of abiotic stresses on crop productivity are crucially needed to sustain agricultural production. Basal stem rot threatens the development of the industry, and the key to solving the problem is to breed new oil palm varieties resistant to adversity. This has created a need for genetic improvement which involves evaluation of germplasm, pest and disease resistance, earliness and shattering resistance, quality of oil, varieties for different climatic conditions, etc. In recent years, insights into physiology, molecular biology, and genetics have significantly enhanced our understanding of oil palm response towards such stimuli as well as the reason for varietal diversity in tolerance. In this review, we explore the research progress, existing problems, and prospects of oil palm stress resistance-based physiological mechanisms of stress tolerance as well as the genes and metabolic pathways that regulate stress response.

SELECTION OF CITATIONS
SEARCH DETAIL
...